Подобные треугольники: как определить их сходство
Разделы
Дата публикации: 12.04.2024

Подобные треугольники: как определить их сходство

50b23602

Понятие подобия треугольников является одним из основных в геометрии и играет важную роль при решении различных задач. Два треугольника считаются подобными, если их соответствующие стороны пропорциональны, а соответствующие углы равны. Рассмотрим, какие треугольники из предложенных подобны между собой.

  1. Треугольник со сторонами 15, 12, 9

    • Стороны: 15/12 = 1.25, 12/9 = 1.33
    • Углы: соответствующие углы равны, так как треугольник прямоугольный
    • Треугольники подобны
  2. Треугольник со сторонами 30, 24, 18

    • Стороны: 30/24 = 1.25, 24/18 = 1.33
    • Углы: соответствующие углы равны, так как треугольник прямоугольный
    • Треугольники подобны
  3. Треугольник со сторонами 9, 7, 4

    • Стороны: 9/7 = 1.29, 7/4 = 1.75
    • Углы: соответствующие углы не равны
    • Треугольники не подобны

Таким образом, из предложенных треугольников только первые два являются подобными между собой, так как их стороны пропорциональны и соответствующие углы равны. Понимание подобия треугольников позволяет решать различные задачи, связанные с построением и измерением фигур в геометрии.